By considering the sorting categories before you submit your abstract, you can determine which categories best fit your research. Choosing the appropriate sorting categories for your work can help to target your work to the appropriate audiences at the DFD Meeting.
Review the abstract submission guidelines
DFD 2024 sorting categories
- 1.0.0 Acoustics: General
- 1.1.0 Aeroacoustics
- 1.2.0 Hydroacoustics
- 1.3.0 Thermoacoustics
- 2.0.0 Aerodynamics: General
- 2.1.0 Control
- 2.2.0 Fixed, Flapping and Rotating Wings
- 2.3.0 Fluid-Structure Interactions, Membranes, Flutter
- 2.4.0 Theory
- 2.5.0 Vehicles
- 2.6.0 Wind Energy
Astrophysical Fluid Dynamics: General
- 4.0.0 Biological Fluid Dynamics: General
- 4.1.0 Biofilms
- 4.2.0 Collective Behavior and Active Matter
- 4.3.0 Flying
- 4.3.1 Flying Birds
- 4.3.2 Flying Insects
- 4.4.0 Single Cells and Bacteria
- 4.5.0 Locomotion
- 4.5.1 High Reynolds Number Swimming
- 4.5.2 Low Reynolds Number Swimming
- 4.5.3 Cilia and Flagella
- 4.5.4 Non-Newtonian Fluids
- 4.5.5 Cells
- 4.6.0 Medical Devices
- 4.7.0 Plant Biomechanics
- 4.8.0 Physiological
- 4.8.1 Cardiac Flows
- 4.8.2 Small Vessels and Microcirculation
- 4.8.3 Large Vessels and Arteries
- 4.8.4 Lymphatic and CSF Flows
- 4.8.5 Phonation and Speech
- 4.8.6 Respiratory Flows
- 4.9.0 Vesicles and Micelles
- 5.0.0 Boundary Layers: General
- 5.1.0 Laminar
- 5.2.0 Thermal
- 5.3.0 Surface Effects, Features, Roughness
- 5.4.0 Turbulent
- 5.4.1 High Re Effects
- 5.4.2 Wall Modeling
- 5.4.3 Curvature and Pressure Gradient Effects
- 6.0.0 Bubbles: General
- 6.1.0 Biomedical, Cavitation and Acoustics
- 6.2.0 Cavitation, Nucleation, Collapse, Coalescence
- 6.3.0 Dynamics and Rupture
- 6.4.0 Growth, Heat Transfer and Boiling
- 6.5.0 Microbubbles and Nanobubbles
- 6.6.0 Surfactants and Foams
- 7.0.0 Compressible Flows: General
- 7.1.0 Instability and Turbulence
- 7.2.0 Shock Waves and Explosions
- 7.3.0 Shock-Boundary Layer Interactions
- 7.4.0 Supersonic and Hypersonic
- 8.0.0 Computational Fluid Dynamics: General
- 8.1.0 Algorithms
- 8.2.0 Applications
- 8.3.0 High Performance Computing
- 8.4.0 Immersed Boundary Methods
- 8.5.0 LES, DNS, Hybrid RANS/LES
- 8.6.0 LBM, SPH, Mesh Free
- 8.7.0 RANS Modeling
- 8.8.0 Shock Capturing, DG, Higher Order Schemes
- 8.9.0 Uncertainty Quantification
- 9.0.0 Convection and Buoyancy-Driven Flows: General
- 9.1.0 Binary Systems
- 9.2.0 Environmental
- 9.3.0 Free Convection and Rayleigh-Benard
- 9.4.0 Heat Transfer and Forced Convection
- 9.5.0 Particle Laden
- 9.6.0 Stratified Flow
- 9.7.0 Thermal Instability
- 9.8.0 Turbulent Convection
- 10.0.0 Drops: General
- 10.1.0 Coalescence
- 10.2.0 Complex Fluids
- 10.3.0 Dynamic Surface Interactions
- 10.4.0 Electric Field Effects
- 10.5.0 Heat Transfer, Evaporation and Buoyancy Effects
- 10.6.0 Impact, Bouncing, Wetting and Spreading
- 10.7.0 Interaction with Elastic Surfaces, Particles and Fibers
- 10.8.0 Instability and Break-up
- 10.9.0 Multiple Drop Interactions
- 10.10.0 Levitation
- 10.11.0 Particle Laden
- 10.12.0 Sessile and Static Surface Interactions
- 10.13.0 Superhydrophobic Surfaces
- 11.0.0 Electrokinetic Flows: General
- 11.1.0 Electric Double Layers
- 11.2.0 Ion-Selective Interfaces
- 11.3.0 Induced-Charge Flows and Nonlinear Dynamics
- 11.4.0 Nanochannels and Surface Conduction
- 11.5.0 Preconcentration, Separations and Reactions
- 12.0.0 Energy: General
- 12.1.0 Combustion
- 12.2.0 Storage
- 12.3.0 Water Power
- 12.4.0 Wind Power
- 12.4.1 Modeling
- 12.4.2 Wakes, Control and Fluctuation
- 13.0.0 Experimental Techniques: General
- 13.1.0 Aerodynamics/Wind Tunnel
- 13.2.0 Data Analysis, Bias and Uncertainty
- 13.3.0 Quantitative Flow Visualization. PIV, PTV, PLIF
- 13.4.0 High-Speed Flow
- 13.5.0 Microscale Flow
- 13.6.0 Multiphase Flow
- 13.7.0 Laser-Based Diagnostics
- 13.8.0 Pressure/Temperature Scalar Surface Visualization
- 14.0.0 Free-Surface Flows: General
- 14.1.0 Instability
- 14.2.0 Interaction with Structures
- 14.3.0 Turbulence
- 14.4.0 Waves
- 15.0.0 Flow Control: General
- 15.1.0 Actuator Design and Analysis
- 15.2.0 Coherent Structures, Vortices and Turbulence
- 15.3.0 Drag Reduction
- 15.3.1 Superhydrophobic and Wetting Treatments
- 15.3.2 Structured Surfaces
- 15.4.0 Passive
- 15.5.0 Separation
- 15.6.0 Theory
- 16.0.0 Flow Instability: General
- 16.1.0 Boundary Layers and Transition
- 16.2.0 Control
- 16.3.0 Complex Fluids
- 16.4.0 Geophysical
- 16.5.0 Global Modes
- 16.6.0 Interfacial and Thin Film
- 16.7.0 Kelvin-Helmholtz
- 16.8.0 Multiphase Flow
- 16.9.0 Nonlinear Dynamics
- 16.10.0 Pulsating Flows
- 16.11.0 Rayleigh-Taylor
- 16.12.0 Richtmyer-Meshkov
- 16.13.0 Theory
- 16.14.0 Transition to Turbulence
- 16.15.0 Vortex-Dominated Flows
- 16.16.0 Wakes
- 17.0.0 General Fluid Dynamics: General
- 17.1.0 Drag Reduction
- 17.2.0 Multi-Physics Phenomena
- 17.3.0 Obstacles, Flow Constrictions
- 17.4.0 Rotating Flows
- 17.5.0 Theory and Mathematical Methods
- 17.6.0 Viscous Flows
- 18.0.0 Geophysical Fluid Dynamics: General
- 18.1.0 Atmospheric
- 18.2.0 Air-Sea Interaction
- 18.3.0 Climate
- 18.4.0 Cryosphere
- 18.5.0 Mesoscale Dynamics, Transport and Mixing
- 18.6.0 Oceanographic
- 18.7.0 Rotating Flows
- 18.8.0 Sediment Transport
- 18.9.0 Stratified Flows
- 19.0.0 Granular Flows: General
- 19.1.0 Applications
- 19.2.0 Fluctuations and Instabilities
- 19.3.0 Locomotion and Drag
- 19.4.0 Mixing and Blending, Segregation and Separation
20.0.0 Industrial Applications: General
- 21.0.0 Jets: General
- 21.1.0 Control
- 21.2.0 Impinging
- 21.3.0 Swirling
- 22.0.0 Low-Order Modeling and Machine Learning in Fluid Dynamics: General
- 22.1.0 Methods
- 22.2.0 Turbulence Modeling
- 22.3.0 Flow Control
- 22.4.0 Design
- 22.5.0 Other Applications
23.0.0 Magnetohydrodynamics: General
- 24.0.0 Microscale and Nanoscale Flows: General
- 24.1.0 Devices and Applications
- 24.2.0 Electrokinetics
- 24.3.0 Interfaces, Wetting, Emulsions
- 24.4.0 Mixing and Separation
- 24.5.0 Non-Newtonian
- 24.6.0 Opto/Electro/Magnetic Manipulation
- 24.7.0 Oscillations and Streaming
- 24.8.0 Particles, Drops, Bubbles
- 24.9.0 Theory
- 25.0.0 Multiphase Flows: General
- 25.1.0 Atomization and Sprays
- 25.2.0 Bubbly Flows
- 25.3.0 Cavitation and Aerated Flows
- 25.4.0 Computational Methods
- 25.5.0 Modeling and Theory
- 25.6.0 Particle-Laden Flows and Fluidization
- 25.7.0 Turbulence
- 26.0.0 Nonlinear Dynamics: General
- 26.1.0 Bifurcations and Chaos
- 26.2.0 Coherent Structures
- 26.3.0 Model Reduction
- 26.4.0 Transition
- 26.5.0 Turbulence
- 27.0.0 Non-Newtonian Flows: General
- 27.1.0 Applications
- 27.2.0 Instability and Turbulence
- 27.3.0 Hydrodynamics
- 27.4.0 Rheology
- 27.5.0 Theory
- 28.0.0 Porous Media Flows: General
- 28.1.0 Applications
- 28.2.0 Convection and Heat Transfer
- 28.3.0 Immiscible Displacements
- 28.4.0 Mixing and Turbulence
- 28.5.0 Theory
- 28.6.0 Wicking and Drying
- 29.0.0 Particle-Laden Flows: General
- 29.1.0 Clustering
- 29.2.0 Deformable Particles
- 29.3.0 Experimental Techniques
- 29.4.0 Modeling and Theory
- 29.5.0 Non-Spherical Particles
- 29.6.0 Particle-Resolved Simulations
- 29.7.0 Particle-Turbulence Interactions
- 30.0.0 Rarefied Flows: General
- 30.1.0 DSMC
- 31.0.0 Reacting Flows: General
- 31.1.0 Computational Methods and Simulations
- 31.2.0 Chemical Kinetics
- 31.3.0 Detonations, Explosions and DDT
- 31.4.0 DNS
- 31.5.0 Extinction and Ignition
- 31.6.0 Instabilities
- 31.7.0 LES
- 31.8.0 Modeling, Theory, PDF and FDF
- 31.9.0 Sprays, Emissions and Soot
- 31.10.0 Turbulent Combustion
- 32.0.0 Separated Flows: General
- 32.1.0 Control
- 32.2.0 Modeling and Theory
- 32.3.0 Simulations
- 32.4.0 Wakes
- 33.0.0 Suspensions: General
- 33.1.0 Confined Flows
- 33.2.0 Fluid-Particle Interaction
- 33.3.0 Instability
- 33.4.0 Modeling and Theory
- 33.5.0 Particle-Resolved Simulations
- 33.6.0 Rheology
- 33.7.0 Structure and Phase Transitions
- 34.0.0 Surface Tension Effects: General
- 34.1.0 Particle-Particle Interactions
- 34.2.0 Interfacial Phenomena
- 34.3.0 Textured Substrates
- 35.0.0 Turbulence: General
- 35.1.0 Boundary Layers
- 35.2.0 Buoyancy-Driven
- 35.3.0 Compressible
- 35.4.0 DNS
- 35.5.0 Environmental
- 35.6.0 Jets
- 35.7.0 LES
- 35.8.0 Measurements
- 35.9.0 Modeling
- 35.10.0 Mixing
- 35.11.0 Multiphase
- 35.12.0 Particle-Laden
- 35.13.0 Planetary Boundary Layer
- 35.14.0 Stratification, Rotation and Magnetic Fields
- 35.15.0 Theory
- 35.16.0 Shear Layers
- 35.17.0 Wakes
- 35.18.0 Wall-Bounded
- 36.0.0 Vortex Dynamics and Vortex Flows: General
- 36.1.0 Astrophysical/Geophysical
- 36.2.0 Instability
- 36.3.0 Propulsion
- 36.4.0 Simulations
- 36.5.0 Theory
- 36.6.0 Turbulence
- 36.7.0 Wakes
- 37.0.0 Waves: General
- 37.1.0 Surface Waves
- 37.2.0 Internal and Interfacial Waves
- 37.3.0 Nonlinear Dynamics and Turbulence
38.0.0 Quantum Computing for Fluids: General
- 39.0.0 Fluids Next: Fluid Dynamics in Advanced Medicine
- 39.1.0 Bayesian Inference for Synthesis of Models and Data in Fluid Mechanics
- 39.2.0 Inertial Particles in Inhomogeneous Turbulent Flows
- 40.0.0 Fluids Next: Flows in Soft Porous Media: Hydrogels, Mucus, and Biological Tissues
- 40.1.0 Ecological Fluid Mechanics: Interactions among Organisms and their Fluid Environment
- 41.0.0 Education and Outreach
- 41.1.0 Diversity, Equity and Inclusion
- 42.0.0 Theoretical/Computational
- 42.1.0 Experimental